The Synthesis of Pyrazolo[1,2-a]pyrazoles. Regio- and Stereo-Selective 1,3-Dipolar Cycloadditions of (1Z)-rel-(4R,5R)-1-Arylmethylene-4-benzoylamino-5-phenyl-3-pyrazolidinon-1-azomethinimines

Jurij Svete [a], Andrej Prešeren [a], Branko Stanovnik* [a], Ljubo Golič [a], and Simona Golič-Grdadolnik [b]

[a] Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
 [b] National Institute of Chemistry, Ljubljana, Slovenia
 Received January 24, 1997

Reaction of rel-(4R,5R)-4-benzoylamino-5-phenyl-3-pyrazolidinone (4) with aromatic aldehydes 5a-f gave the corresponding (1Z)-rel-(4R,5R)-1-arylmethylene-4-benzoylamino-5-phenyl-3-pyrazolidinon-1-azomethinimines 6a-f. 1,3-Dipolar cycloadditions of azomethinimines 6a-f to various dipolarophiles, which were found to proceed regio- and stereo-selectively, afforded the corresponding pyrazolo[1,2-a]-pyrazoles 8a-f, 10, and 13-16. Reaction of azomethinimine 6a with hydrogen cyanide gave rel-(5R,6R)-6-benzoylamino-5,6-dihydro-3,5-diphenyl-1-oxo-1H,7H-pyrazolo[1,2-a][1,2,3]triazole (18) as a representative of a new ring system.

J. Heterocyclic Chem., 34, 1323 (1997).

Recently, much attention has been payed to the synthesis of 2-amino-2,3-dihydro-1-oxo-1H,5H-pyrazolo[1,2-a]-pyrazole derivatives, since they were the first non- β -lactam containing compounds exhibiting inhibition of penicillin-binding proteins [1]. Especially, LY 186826, 1, showed very strong activity which is even larger than that of several penicillins and cephalosporins [2] (Figure 1).

Figure 1. LY 186826 (1)

1,3-Dipolar cycloaddition of various acetylenes to 1-alkylidene-3-pyrazolidinon-1-azomethinimines is the most common reaction for the preparation of 2,3-dihydro-1-oxo-1*H*,5*H*-pyrazolo[1,2-*a*]pyrazoles [3-7]. However, much less work has been done on the transformations of 4-benzoylamino-5-phenyl-3-pyrazolidinone 4 [8]. In continuation of our work on the chemistry of azomethinimines [9-11], we now report some stereo-selective 1,3-dipolar cycloaddition reactions of (1*Z*)-rel-(4*R*,5*R*)-1-arylmethylene-4-benzoylamino-5-phenyl-3-pyrazolidinone (4), accessible in two steps from hippuric acid (2) via 4-benzylidene-2-phenyl-5(4*H*)-oxazolone 3 [8,12], as starting material. First, we examined

the relative configuration of the pyrazolidinone 4 by ¹H nmr, since no such assignments were given in the literature [8]. A large coupling constant, $J_{H4H5} = 11.0$ Hz, indicated rel-(4R,5R)-configuration of 4-benzoylamino-5-phenyl-3pyrazolidinone (4). Pyrazolidinone 4 is therefore a racemate ($\alpha_D = 0.0^{\circ}$) with trans-configuration. Acid-catalysed reaction of rel-(4R.5R)-4-benzoylamino-5-phenyl-3-pyrazolidinone (4) with the following substituted benzaldehydes 5a-f; benzaldehyde (5a), 4-methoxybenzaldehyde (5b), 4-dimethylaminobenzaldehyde (5c), 4-nitrobenzaldehyde (5d), 3-nitrobenzaldehyde (5e), and 2,6-dichlorobenzaldehyde (5f), gave the corresponding (1Z)-rel-(4R,5R)-1arylmethylene-4-benzoylamino-5-phenyl-3-pyrazolidinon-1-azomethinimines 6a-f. (Z)-Orientation around the exocyclic C=N double bond was determined by nmr (NOESY), which showed that the distance between H5 and CH=N in azomethinimine 6a is 0.25 nm. This observation is in contrast to our previous experiences with the structures of stable azomethinimines [9-11]. Cycloadditions of ylides 6a-f to dimethyl acetylenedicarboxylate (7) afforded the corresponding diastereoisomerically pure rel-(2R,3R,5S)-5-aryl-2-benzoylamino-6,7-bis(methoxycarbonyl)-2,3-dihydro-1-oxo-3-phenyl-1H,5H-pyrazolo-[1,2-a]pyrazoles 8a-f. The relative configuration of cycloadduct 8a was determined by nmr (NOESY, d_{H3H5} = 0.24 nm). The distance between H₃ and H₅ in cycloadduct 8a clearly indicates the cis-relationship. Consequently, cycloaddition of an azomethinimine 6 to dimethyl acetylenedicarboxylate (7) must take place almost exclusively at the less hindered face of azomethinimine 6, in order to give the racemic cycloadduct 8 with rel-(2R,3R,5S)-configuration [13] (Scheme 1).

Next, we decided to examine this unexpected stereoselectivity in more detail. For this purpose, (1Z)-rel-(4R.5R)-1-benzylidene-4-benzoylamino-5-phenyl-3-pyrazolidinon-1-azomethinimine (6a), as the model azomethinimine, was treated with some other dipolarophiles such as dimethyl maleinate (9), methyl acetoacetate (11), ethyl acetoacetate (12), and hydrogen cyanide. It turned out that not only stereoselectivity but, with unsymmetrically substituted dipolarophiles 11 and 12, also regioselectivity accompanied the cycloaddition reactions. Thus, treatment of (1Z)-rel-(4R,5R)-1-benzylidene-4-benzoylamino-5-phenyl-3-pyrazolidinon-1-azomethinimine (6a) with dimethyl maleinate (9) gave rel-(2R,3R,5S,6R,7S)-2benzoylamino-6,7-bis(methoxycarbonyl)-3,5-diphenyl-1oxoperhydropyrazolo [1,2-a] pyrazole (10) as the only diastereoisomer. The cis-orientation between the protons H_3 and H_5 was determined by nmr (NOESY, $d_{H3H5} = 0.23$ nm). Taking into account, that protons attached to the positions 5 and 6 are also *cis*-oriented ($J_{H5H6} = 11.0 \text{ Hz}$), we concluded, that exo-approach of dimethyl maleinate (9) to the less hindered face of azomethinimine 6a took place. Reaction of (1Z)-rel-(4R,5R)-1-benzylidene-4-benzovlamino-5-phenyl-3-pyrazolidinon-1-azomethinimine (6a) with methyl acetoacetate (11) and ethyl acetoacetate (12), performed in the presence of a base at room temperature, resulted in the formation of diastereoisomeric mixtures, rel-(2R, 3R, 5S, 6R, 7RS)-2-benzoylamino-3,5diphenyl-7-hydroxy-6-methoxycarbonyl-7-methyl-1oxoperhydropyrazolo[1,2-a]pyrazole (13) and rel-(2R,3R,5S,6R,7RS)-2-benzoylamino-3,5-diphenyl-6ethoxycarbonyl-7-hydroxy-7-methylperhydropyrazolo[1,2-a]pyrazole (14), respectively. We distinguished between the diastereoisomers in the mixtures of 13 and 14 by ¹H nmr, since two sets of signals appear in the corresponding spectra. However, we were so far unable to separate these two diastereoisomers in a preparative manner. Fortunately, treatment of diastereoisomeric mixtures 13 and 14 with acid resulted in elimination of water and formation of diastereoisomerically pure products, rel-(2R,3R,5S)-2-benzoylamino-2,3-dihydro-3,5-diphenyl-6methoxycarbonyl-7-methyl-1-oxo-1H,5H-pyrazolo-[1,2-a] pyrazole (15) and rel-(2R,3R,5S)-2-benzoylamino-2,3-dihydro-3,5-diphenyl-6-ethoxycarbonyl-7-methyl-1oxo-1*H*,5*H*-pyrazolo[1,2-*a*]pyrazole (16), respectively. These transformations, however, proved the diastereoisomeric nature of mixtures 13 and 14. rel-(2R,3R,5S)-2-

Benzoylamino-2,3-dihydro-3,5-diphenyl-6-methoxycarbonyl-7-methyl-1-oxo-1*H*,5*H*-pyrazolo[1,2-*a*]pyrazole (15) and *rel*-(2*R*,3*R*,5*S*)-2-benzoylamino-2,3-dihydro-3,5-phenyl-6-ethoxycarbonyl-7-methyl-1-oxo-1*H*,5*H*-pyrazolo[1,2-*a*]pyrazole (16) have also been prepared directly

by acid-catalysed reaction of (1Z)-rel-(4R,5R)-1-benzylidene-4-benzoylamino-5-phenyl-3-pyrazolidinone-1-azomethinimine (6a) with methyl acetoacetate (11) and ethyl acetoacetate (12), respectively. Both, a large coupling constant $(J_{H5H6} = 10.9-11.2 \text{ Hz})$, which was

Table 1
Experimental and Analytical Data

Compound	yield (%)	mp °C	M+	Molecular Formula
			(m/e)	Analyses
6a	89	240-241		$C_{23}H_{19}N_3O_2$
		(from ethanol)		Calcd: C, 74.77; H, 5.19; N, 11.38
6Ь	78	228-230	399	Found: C, 74.51; H, 5.14; N, 11.65 C ₂₄ H ₂₁ N ₃ O ₃
0.0	70	(from ethanol)		Calcd: C, 72.15; H, 5.30; N, 10.52
				Found: C, 72.06; H, 5.06; N, 10.58
6c	93	252-254	412	C ₂₅ H ₂₄ N ₄ O ₂ Calcd: C, 72.78; H, 5.87; N, 13.59
		(from ethanol)		Found: C, 72.50; H, 5.60; N, 14.06
6d	76	169-171	414	$C_{23}H_{18}N_4O_4$
		(from ethanol)	•	Calcd: C, 66.65; H, 4.38; N, 13.53
	00	207.200	41.4	Found: C, 66.99; H, 4.31; N, 13.47
бе	90	207-209 (from ethanol)	414	C ₂₃ H ₁₈ N ₄ O ₄ Calcd: C, 66.65; H, 4.38; N, 13.53
		(Hom bullion)		Found: C, 66.23; H, 4.04; N, 13.41
6f	88	214-216		$C_{23}H_{17}Cl_2N_3O_2$
		(from ethanol)		Calcd: C, 63.15; H, 3.92; N, 9.61
8a	86	205-206	511	Found: C, 63.07; H, 3.63; N, 9.94 C ₂₉ H ₂₅ N ₃ O ₆
oa.	00	(from methanol)	311	Calcd: C, 68.08; H, 4.93; N, 8.22
		,		Found: C, 68.08; H, 4.88; N, 8.10
8b	75	197-198		$C_{30}H_{27}N_3O_7$
		(from methanol)		Calcd: C, 66.52; H, 5.03; N, 7.76 Found: C, 66.63; H, 4.82; N, 8.07
8c	81	208-209		$C_{31}H_{30}N_4O_6$
		(from methanol)		Calcd: C, 67.12; H, 5.46; N, 10.11
	00	174 176		Found: C, 66.83; H, 5.24; N, 10.42
8d	80	174-175 (from methanol)		C ₂₉ H ₂₄ N ₄ O ₈ Calcd: C, 62.57; H, 4.35; N, 10.07
		(nom modumor)		Found: C, 62.35; H, 4.08; N, 10.23
8e	89	208-209		$C_{29}H_{24}N_4O_8$
		(from methanol)		Calcd: C, 62.57; H, 4.35; N, 10.07
8 f	77	227-229		Found: C, 62.56; H, 4.10; N, 10.36 C ₂₉ H ₂₃ Cl ₂ N ₃ O ₆
O1	,,	(from methanol)		Calcd: C, 60.09; H, 4.00; N, 7.25
				Found: C, 60.11; H, 3.83; N, 7.32
10	64	188-190		$C_{29}H_{27}N_3O_6$
		(from toluene)		Calcd: C, 67.81; H, 5.30; N, 8.19 Found: C, 68.02; H, 5.06; N, 7.90
13	40	179-180		$C_{28}H_{27}N_3O_5$
		(washed with ether)		Calcd: C, 69.25; H, 5.61; N, 8.66
1.4	63	173		Found: C, 69.46; H, 5.77; N, 8.70 C ₂₉ H ₂₉ N ₃ O ₅
14	03	(from methanol)		Calcd: C, 69.71; H, 5.85; N, 8.42
		(4		Found: C, 69.42; H, 5.75; N, 8.74
15	66	216-218 dec		$C_{28}H_{25}N_3O_4$
		(from methanol)		Calcd: C, 71.92; H, 5.39; N, 8.99 Found: C, 71.60; H, 5.56; N, 9.12
16	62	200-201		C ₂₉ H ₂₇ N ₃ O ₄
	02	(from methanol)		Calcd: C, 72.32; H, 5.65; N, 8.73
		•		Found: C, 72.06; H, 5.45; N, 8.71
18	81	254-255 dec		$C_{24}H_{20}N_4O_2$
		(from ethanol/DMF)		Calcd: C, 72.70; H, 5.09; N, 14.14 Found: C, 72.50; H, 5.00; N, 14.32
				round. C, 72.30; ft, 3.00; N, 14.32

Table 2 1H NMR Data

Compound	MHz Solvent	¹H NMR (δ - TMS)
4	300	4.60 (1H, d, H ₅), 4.99 (1H, dd, H ₄), 5.49 (1H, br s, H ₁), 7.28-7.37 (3H, m, 3H-Ph), 7.45-7.54 (5H, m, Ph), 7.84-7.87
6a	DMSO-d ₆ 300	(2H, m, 2H-Ph), 8.80 (1H, d, NHCOPh), 9.56 (1H, s, H ₂), $J_{H4H5} = 11.0$ Hz, $J_{NHCH} = 9.0$ Hz 4.65 (1H, dd, H ₄), 5.80 (1H, dd, H ₅), 7.40 (1H, br s, CH=N ⁺ -N ⁻), 7.45-7.56 (11H, m, 11H-Ph), 7.87-7.90 (2H, m, 2H-N ⁺ -N ⁻), 7.45-7.56 (11H, m, 11H-Ph), 7.87-7.90 (2H, m, 2H-N ⁺ -N ⁻), 7.45-7.56 (11H, m, 11H-Ph), 7.87-7.90 (2H, m, 2H-N ⁺ -N ⁻), 7.45-7.56 (11H, m, 11H-Ph), 7.87-7.90 (2H, m, 2H-N ⁺ -N ⁻), 7.45-7.56 (11H, m, 11H-Ph), 7.87-7.90 (2H, m, 2H-N ⁺ -N ⁻), 7.45-7.56 (11H, m, 11H-Ph), 7.87-7.90 (2H, m, 2H-N ⁺ -N ⁻), 7.45-7.56 (11H, m, 11H-Ph), 7.87-7.90 (2H, m, 2H-N ⁺ -N ⁻), 7.45-7.56 (11H, m, 11H-Ph), 7.87-7.90 (2H, m, 2H-N ⁺ -N ⁻), 7.45-7.56 (11H, m, 11H-Ph), 7.87-7.90 (2H, m, 2H-N ⁺ -N ⁻), 7.40 (1H, br s, CH-N ⁺ -N ⁻), 7.45-7.56 (11H, m, 11H-Ph), 7.87-7.90 (2H, m, 2H-N ⁺ -N ⁻), 7.45-7.56 (11H, m, 11H-Ph), 7.87-7.90 (2H, m, 2H-N ⁺ -N ⁻), 7.45-7.56 (11H, m, 11H-Ph), 7.87-7.90 (2H, m, 2H-N ⁺ -N ⁻), 7.40 (1H, br s, CH-N ⁺ -N ⁻), 7.45-7.56 (11H, m, 11H-Ph), 7.87-7.90 (2H, m, 2H-N ⁺ -N ⁻), 7.40 (1H, br s, CH-N ⁺ -N ⁻), 7.40 (1H, br s, CH-N ⁺ -N ⁻), 7.40 (1H, br s, CH-N ⁺ -N ⁻), 7.40 (1H, br s, CH-N ⁺ -N ⁻), 7.40 (1H, br s, CH-N ⁺ -N ⁻), 7.40 (1H, br s, CH-N ⁺ -N ⁻), 7.40 (1H, br s, CH-N ⁺ -N ⁻), 7.40 (1H, br s, CH-N ⁺ -N ⁻), 7.40 (1H, br s, CH-N ⁺ -N ⁺), 7.40 (1H, br s, CH-N ⁺ -N
G.	DMSO-d ₆ 60	Ph), 8.34-8.37 (2H, m, 2H-Ph), 9.23 (1H, d, NHCOPh), $J_{H4H5} = 5.2$ Hz, $J_{NHCH} = 7.8$ Hz, $J_{H5-CH=N}^{+} = 0.8$ Hz 3.84 (3H, s, CH ₃), 5.07 (1H, t, H ₄), 5.74 (1H, d, H ₅), 6.67 (1H, s, CH=N ⁺ -N ⁻), 6.82 (2H, d, 2H-Ar), 7.30-7.50 (8H,
6b	CDCl ₃	m, Ph and 3H-PhCO), 7.81-8.00 (2H, m, 2H-PhCO), 8.12 (2H, d, 2H-Ar), 8.50 (1H, d, NHCOPh), $J_{H4H5} = J_{NHCH} =$
6c	60 DMSO-d ₆	6.0 Hz, $J_{H5-CHN+} = 0.5$ Hz, $J_{Ar} = 9.0$ Hz 3.00 (6H, s, NMe ₂), 4.65 (1H, dd, H ₄), 5.75 (1H, d, H ₅), 6.80 (2H, d, 2H-Ar), 7.20 (1H, s, CH=N+-N-), 7.46-7.62 (8H, m, Ph and 3H-PhCO), 7.90-8.05 (2H, m, 2H-PhCO), 8.22 (2H, d, 2H-Ar), 9.20 (1H, d, NHCOPh), $J_{H4H5} = 5.0$ Hz, $J_{NHCH} = 8.0$ Hz, $J_{Ar} = 9.0$ Hz
6d	60 DMSO-d ₆	4.70 (1H, dd, H ₄), 5.96 (1H, d, H ₅), 7.50-7.62 (9H, m, Ph, 3H-PhCO, and CH=N+-N ⁻), 7.87-8.02 (2H, m, 2H-PhCO), 8.35 (2H, d, 2H-Ar), 8.65 (2H, d, 2H-Ar), 9.33 (1H, d, NHCOPh), J _{H4H5} = 5.4 Hz, J _{NHCH} = 7.6 Hz, J _{Ar} = 9.0 Hz
бе	60	4.66 (1H, dd, H _d), 5.86 (1H, d, H _S), 7.35-7.65 (9H, m, Ph, 3H-PhCO, and CH=N+-N-), 7.80-8.00 (3H, m, 2H-PhCO and 1H-Ar), 8.28-8.68 (2H, m, 2H-Ar), 9.27 (1H, d, NHCOPh), 9.48 (1H, m, 1H-Ar), $J_{H4HS} = 5.0$ Hz, $J_{NHCH} = 8.2$ Hz
6f	DMSO-d ₆ 60	4.81 (1H, dd, H ₄), 5.86 (1H, d, H ₅), 7.40-7.63 (12H, m, Ph, 3H-PhCO, 3H-Ar, and CH=N+-N ⁻), 7.81-7.98 (2H, m,
8a	DMSO-d ₆ 60	2H-PhCO), 9.20 (1H, d, N <i>H</i> COPh), $J_{H4H5} = 6.8$ Hz, $J_{NHCH} = 8.2$ Hz, $J_{H5-CHN}^+ = 0.8$ Hz 3.54 (3H, s, OMe), 4.06 (3H, s, OMe), 4.71 (1H, d, H ₃), 5.40 (1H, dd, H ₂), 5.58 (1H, s, H ₅), 7.19-7.78 (16H, m, 5H-
04	CDCl ₃	Δr SH-Ph SH-PhCO and NHCOPh). $I_{10010} = 11.0$ Hz, $J_{N1100} = 8.6$ Hz
8b	60 CDCl ₃	3.59 (3H, s, OMe), 3.78 (3H, s, OMe), 4.05 (3H, s, OMe), 4.69 (1H, d, H ₃), 5.34 (1H, dd, H ₂), 5.53 (1H, s, H ₅), 6.74 (2H, d, Ar), 7.02-7.76 (13H, m, 2H-Ar, 10H-Ph, and NHCOPh), $J_{H2H3} = 11.0$ Hz, $J_{NHCH} = 9.0$ Hz, $J_{Ar} = 9.2$ Hz
8c	60	2.86 (6H, s. NMe ₂), 3.55 (3H, s, OMe), 4.02 (3H, s, OMe), 4.63 (1H, d, H ₃), 5.30 (1H, dd, H ₂), 5.43 (1H, s, H ₅), 6.51
0.1	CDCl ₃ 60	(2H, d, 2H-Ar), 7.00-7.74 (13H, m, 2H-Ar, 10H-Ph, and NHCOPh), $J_{H2H3} = 11.0 \text{ Hz}$, $J_{NHCH} = 9.0 \text{ Hz}$, $J_{Ar} = 8.8 \text{ Hz}$ 3.58 (3H, s, OMe), 4.10 (3H, s, OMe), 4.76 (1H, d, H ₃), 5.45 (1H, dd, H ₂), 5.71 (1H, s, H ₅), 7.12-7.73 (13H, m, 2H-
8d	CDCl ₃	Ar. 10H-Ph. and NHCOPh), 8.10 (2H, d, 2H-Ar), $J_{H2H3} = 11.0 \text{ Hz}$, $J_{NHCH} = 8.2 \text{ Hz}$, $J_{Ar} = 9.0 \text{ Hz}$
8e	60	3.59 (3H, s, OMe), 3.98 (3H, s, OMe), 4.78 (2H, m, H_2 and H_3), 5.92 (1H, s, H_5), 7.07-8.15 (14H, m, 4H-Ar, and 10H-Ph), 9.18 (1H, d, NHCOPh), $J_{NHCH} = 9.0 \text{ Hz}$
8f	DMSO-d ₆ 60	3.60 (3H, s, OMe), 4.00 (3H, s, OMe), 4.32 (1H, d, H ₃), 5.38 (1H, dd, H ₂), 6.46 (1H, s, H ₅), 6.50 (1H, d, NHCOPh),
	CDCl ₃	$7.00-7.80$ (13H, m. 3H-Ar, 10H-Ph), $J_{12213} = 10.4$ Hz, $J_{NHCH} = 8.2$ Hz
10	300 CDCl ₃	3.58 (3H, s, OMe), 3.85 (3H, s, OMe), 3.86 (1H, dd, H_6), 4.37 (1H, d, H_3), 4.38 (1H, d, H_7), 4.82 (1H, dd, H_5), 5.57 (1H, dd, H_9), 6.76 (1H, d, NHCOPh), 6.95-7.05 (6H, m, 6H-Ph), 7.11-7.21 (4H, m, 4H-Ph), 7.32-7.38 (2H, m, 2H-Ph), 7.42-7.48 (1H, m, 1H-Ph), 7.68-7.71 (2H, m, 2H-Ph), $J_{H2H3} = 12.0 Hz$, $J_{H5H6} = 8.8 Hz$, $J_{H6H7} = 11.0 Hz$, $J_{H3H5} = 0.7 Hz$, $J_{NHCH} = 8.6 Hz$
13	300 DMSO	major isomer A 1.96 (3H, s, 7-Me), 3.55 (3H, s, OMe), 3.57 (1H, d, H ₆), 4.28 (1H, d, H ₅), 4.38 (1H, d, H ₃), 5.09 (1H, dd, H ₂), 6.94-
		7.03 (6H, m, 6H-Ph), 7.10-7.14 (2H, m, 2H-Ph), 7.19 (1H, br s, OH), 7.21-7.25 (2H, m, 2H-Ph), 7.42-7.57 (3H, m, 3H-Ph), 7.79-7.83 (2H, m, 2H-Ph), 8.93 (1H, d, NHCOPh), $J_{H2H3} = 12.4$ Hz, $J_{H5H6} = 11.2$ Hz, $J_{NHCH} = 9.1$ Hz minor isomer B
		1.78 (3H, s, 7-Me), 3.61 (3H, s, OMe), 3.66 (1H, d, H ₆), 4.12 (1H, d, H ₅), 4.24 (1H, d, H ₃), 4.88 (1H, dd, H ₂), 6.94-7.03 (6H, m, 6H-Ph), 7.10-7.14 (2H, m, 2H-Ph), 7.15 (1H, s, OH), 7.21-7.25 (2H, m, 2H-Ph), 7.42-7.57 (3H, m, 3H-Ph), 7.79-7.83 (2H, m, 2H-Ph), 8.93 (1H, d, NHCOPh), J _{H2H3} = 11.8 Hz, J _{H5H6} = 11.0 Hz, J _{NHCH} = 8.8 Hz
14	300	A:B = 4:3 major isomer A
••	DMSO-d ₆	1.12 (3H, t, CH_3CH_2); 1.97 (3H, s, 7-Me), 3.52 (1H, d, H_6), 3.90-4.17 (2H, m, CH_2CH_3), 4.28 (1H, d, H_5), 4.38 (1H, d, H_3), 5.09 (1H, dd, H_2), 6.94-7.03 (6H, m, 6H-Ph), 7.11-7.13 (2H, m, 2H-Ph), 7.18 (1H, s, OH), 7.20-7.25 (2H, m, 2H-Ph), 7.45-7.57 (3H, m, 3H-Ph), 7.80-7.83 (2H, m, 2H-Ph), 8.92 (1H, d, $NHCOPh$), $J_{CH3CH2} = 7.1$ Hz, $J_{H2H3} = 12.4$ Hz, $J_{H5H6} = 11.2$ Hz, $J_{NHCH} = 9.1$ Hz
		minor isomer B 1.13 (3H, t, CH ₃ CH ₂), 1.79 (3H, s, 7-Me), 3.62 (1H, d, H ₆), 3.90-4.17 (2H, m, CH ₂ CH ₃), 4.12 (1H, d, H ₅), 4.23 (1H, d, H ₃), 4.88 (1H, dd, H ₂), 6.94-7.03 (6H, m, 6H-Ph), 7.11-7.15 (2H, m, 2H-Ph), 7.13 (1H, s, OH), 7.20-7.25 (2H, m, 2H-Ph), 7.45-7.57 (3H, m, 3H-Ph), 7.80-7.83 (2H, m, 2H-Ph), 8.92 (1H, d, NHCOPh), J _{CH2CH2} = 7.1 Hz, J _{H2H3} =
		11.9 Hz, $J_{H5H6} = 10.9$ Hz, $J_{NHCH} = 8.8$ Hz
15	300 DMSO-d ₆	A:B = 3:2 2.64 (3H, d, 7-Me), 3.48 (3H, s, OMe), 4.71 (1H, d, H ₃), 4.85 (1H, dd, H ₂), 5.22 (1H, d, H ₅), 7.04-7.22 (10H, m, 10H-Ph), 7.48-7.56 (3H, m, 3H-Ph), 7.81-7.83 (2H, m, 2H-Ph), 9.067 (1H, d, NHCOPh), J _{H2H3} = 11.3 Hz, J _{H5CH3} = 1.3
	· ·	Hz, Januari = 8.1 Hz
16	300 CDCl ₃	0.98 (3H, t, CH_3CH_2), 2.75 (3H, d, 7- CH_3), 3.93 (1H, dq, $CH_aH_bCH_3$), 4.02 (1H, dq, $CH_aH_bCH_3$), 4.67 (1H, d, H_3), 4.74 (1H, dd, H_2), 5.15 (1H, d, H_5), 6.83 (1H, d, $NHCOPh$), 7.05-7.17 (10H, m, 10H- Ph), 7.34-7.39 (2H, m, 2H- Ph), 7.45-7.51 (1H, m, 1H- Ph), 7.69-7.72 (2H, m, 2H- Ph), $J_{H2H3} = 11.2$ Hz, $J_{NHCH} = 7.2$ Hz, $J_{H5CH3} = 1.5$ Hz,
18	300 DMSO-d ₆	$J_{\text{CH3CH2}} = 7.1 \text{ Hz}, J_{\text{CH2}} \text{ (gem)} = 11.2 \text{ Hz}$ 5.25 (1H, t, H ₆), 5.50 (1H, d, H ₅), 7.14 (1H, s, H ₁), 7.21-7.74 (14H, m, 13H-Ph and H ₂), 7.99-8.02 (2H, m, 2H-Ph), 8.80 (1H, d, N <i>H</i> COPh), $J_{\text{H2H3}} = 9.7 \text{ Hz}, J_{\text{NHCH}} = 9.2 \text{ Hz}$

observed in ${}^{1}H$ nmr spectra of mixtures 13 and 14, and cis-orientation between H_3 and H_5 in compound 15 (NOESY, $d_{H3H5} = 0.23$ nm), indicates the exo-approach of acetoacetates 11 and 12 to the less hindered face of azomethinimine 6a [13] (Scheme 2).

Treatment of (1Z)-rel-(4R,5R)-1-benzylidene-4-benzoylamino-5-phenyl-3-pyrazolidinon-1-azomethinimine (6a) with potassium cyanide and acetic acid in methanol gave rel-(5R,6R)-6-benzoylamino-5,6-dihydro-3,5-diphenyl-1-oxo-1H,7H-pyrazolo[1,2-a][1,2,3]triazole (18). Compound 18 is a representative of a novel ring system, since only the preparation of 1H-pyrazolo-[1,2-a][1,2,3]triazol-4-ium salts have been previously reported in the literature [14]. Presumably, this cycloaddition proceeds via the formation of 3H,7H-isomer 17, which tautomerizes into a more stable 1H,7H-isomer 18 (Scheme 3).

EXPERIMENTAL

Melting points were taken on a Kofler micro hot stage and on a Büchi 535 melting point apparatus. The ¹H nmr spectra were obtained on a Varian E-360 (60 MHz) and on a Bruker Avance DPX 300 (300 MHz) spectrometer with DMSO-d₆ or deuteriochloroform as solvents and TMS as internal standard. NOESY experiments were performed on a Bruker Avance DPX 300 (300 MHz) spectrometer. The microanalyses for C, H, and N were obtained on a Perkin-Elmer CHN Analyser 2400. Mass spectra were obtained on a Autospeck Q spectrometer (VG - Analytical).

4-Benzylidene-2-phenyl-5(4H)-oxazolone (3) was prepared according to the procedure described in the literature [12].

rel-(4S,5R)-4-Benzoylamino-5-phenyl-3-pyrazolidinone (4).

This compound was prepared by a slightly modified procedure described in the literature [8]. A mixture of 4-benzylidene-2-phenyl-5(4H)-oxazolone (3, 24.9 g, 0.1 mole), ethanol (100 ml), and hydrazine hydrate (80%, 15 ml) was heated under reflux for 5 hours, cooled, and the precipitate collected by filtration to give 4 in 53% yield, mp 229-231° (from ethanol), lit [8] mp 225-227°.

(1Z)-rel-(4R,5R)-1-Arylmethylene-4-benzoylamino-5-phenyl-3-pyrazolidinon-1-azomethinimines 6a-f. General Procedure.

A mixture of rel-(4R,5R)-4-benzoylamino-5-phenyl-3-pyrazolidinone (4, 2.81 g, 0.01 mole), substituted benzaldehyde 5a-f (0.012 mole) and anhydrous ethanol (30 ml) was heated at the

reflux temperature for 5 minutes. Trifluoroacetic acid (10 drops, approximately 0.05 ml) was added through a reflux condenser, and the mixture was refluxed for 1 hour, cooled, and the precipitate collected by filtration to give azomethinimines 6a-f. Experimental and analytical data for azomethinimines 6a-f are given in Tables 1 and 2.

rel-(2R,3R,5S)-5-Aryl-2-benzoylamino-6,7-bis(methoxycarbonyl)-2,3-dihydro-1-oxo-3-phenyl-1H,5H-pyrazolo[1,2-a]pyrazoles 8a-f. General Procedure.

A mixture of (1Z)-rel-(4R,5R)-1-arylmethylene-4-benzoylamino-5-phenyl-3-pyrazolidinon-1-azomethinimine 6a-f (0.005 mole), dimethyl acetylenedicarboxylate (7, 0.71 g, 0.005 mole), and anisole (30 ml) was heated at the reflux temperature until complete dissolution of azomethinimine 6a-f (approximately 1-2 hours). Volatile components were evaporated in vacuo. Methanol (3 ml) was added to the residue, and the mixture was left in a refrigerator for 2 hours. The precipitate was collected by filtration to give cycloadducts 8a-f. Experimental and analytical data for rel-(2R,3R,5S)-5-aryl-2-benzoylamino-6,7-bis(methoxycarbonyl)-2,3-dihydro-1-oxo-3-phenyl-1H,5H-pyrazolo[1,2-a]pyrazoles 8a-f are given in Tables 1 and 2.

rel-(2R,3R,5S,6R,7S)-2-Benzoylamino-6,7-bis(methoxycar-bonyl)-3,5-diphenyl-1-oxoperhydropyrazolo[1,2-a]pyrazole (10).

A mixture of (1Z)-rel-(4R,5R)-1-arylmethylene-4-benzoy-lamino-5-phenyl-3-pyrazolidinon-1-azomethinimine (6a, 0.369 g, 0.001 mole), dimethyl maleinate (9, 0.150 g, 0.00104 mole) and anisole (5 ml) was heated at the reflux temperature for 3 hours, cooled, and volatile components evaporated in vacuo. Toluene (5 ml) was added to the residue and the precipitate collected by filtration to give 10. Experimental and analytical data for rel-(2R,3R,5S,6R,7S)-2-benzoylamino-6,7-bis(methoxycarbonyl)-3,5-diphenyl-1-oxoperhydropyrazolo[1,2-a]pyrazole (10) are given in Tables 1 and 2.

rel-(2R,3R,5S,6R,7RS)-2-Benzoylamino-3,5-diphenyl-7-hydroxy-6-methoxycarbonyl-7-methyl-1-oxoperhydropyrazolo[1,2-a]pyrazole (13) and rel-(2R,3R,5S,6R,7RS)-2-Benzoylamino-3,5-diphenyl-6-ethoxycarbonyl-7-hydroxy-7-methyl-1-oxoperhydro-pyrazolo[1,2-a]pyrazole (14). General Procedure.

A mixture of (1Z)-rel-(4R,5R)-1-arylmethylene-4-benzoyl-amino-5-phenyl-3-pyrazolidinon-1-azomethinimine (6a, 0.738 g, 0.002 mole), acetoacetic ester 11,12 (0.0022 mole), methanol (8 ml), and triethylamine (0.28 ml, 0.002 mole) was stirred at room temperature for 5 hours, left at 4° for 2 days, and the precipitate collected by filtration to give 13 or 14, respectively. Experimental and analytical data for mixtures 13 and 14 are given in Tables 1 and 2.

rel-(2R,3R,5S)-2-Benzoylamino-2,3-dihydro-3,5-diphenyl-6-methoxycarbonyl-7-methyl-1-oxo-1H,5H-pyrazolo[1,2-a]pyrazole (15).

Procedure A.

A mixture of (1Z)-rel-(4R,5R)-1-arylmethylene-4-benzoylamino-5-phenyl-3-pyrazolidinon-1-azomethinimine (6a, 0.369 g, 0.001 mole), methyl acetoacetate (11, 0.125 g, 0.00108 mole), and anhydrous methanol (4 ml) was heated at the reflux temperature for 5 minutes, then trifluoroacetic acid (4 drops, catalytic amount) was added, and the mixture was refluxed for 5 hours, cooled in a refrigerator, and the precipitate collected by filtration to give 15.

Procedure B.

A mixture of 13 (0.485 g, 0.001 mole) and anhydrous methanol (4 ml) was heated at the reflux temperature for 5 minutes, then trifluoroacetic acid (4 drops, catalytic amount) was added and the whole mixture was refluxed for 5 hours, cooled in a refrigerator, and the precipitate collected by filtration to give 15. Experimental and analytical data for compound 15 are given in Tables 1 and 2.

rel-(2R,3R,5S)-2-Benzoylamino-2,3-dihydro-3,5-diphenyl-6-ethoxycarbonyl-7-methyl-1-oxo-1*H*,5*H*-pyrazolo[1,2-*a*]pyrazole (16).

Procedure A.

A mixture of (1Z)-rel-(4R,5R)-1-arylmethylene-4-benzoylamino-5-phenyl-3-pyrazolidinon-1-azomethinimine (6a, 0.369 g, 0.001 mole), ethyl acetoacetate (12, 0.140 g, 0.00108 mole), and anhydrous ethanol (4 ml) was heated at reflux temperature for 5 minutes. Trifluoroacetic acid (4 drops, catalytic amount) was added, and the mixture was refluxed for 5 hours, cooled in a refrigerator, and the precipitate collected by filtration to give 16.

Procedure B.

A mixture of 14 (0.499 g, 0.001 mole) and anhydrous ethanol (4 ml) was heated at the reflux temperature for 5 minutes. Trifluoroacetic acid (4 drops, catalytic amount) was added and the mixture was refluxed for 5 hours, cooled in a refrigerator, and the precipitate collected by filtration to give 16. Experimental and analytical data for compound 16 are given in Tables 1 and 2.

rel-(5R,6R)-6-Benzoylamino-5,6-dihydro-3,5-diphenyl-7-oxo-1H,7H-pyrazolo[1,2-a][1,2,3]triazole (18).

A mixture of (1Z)-rel-(4R,5R)-1-arylmethylene-4-benzoylamino-5-phenyl-3-pyrazolidinon-1-azomethinimine (6a, 0.369 g, 0.001 mole), potassium cyanide (0.100 g, 0.0015 mole), and methanol (4 ml) was stirred at room temperature for 5 minutes, then acetic acid (0.07 ml, 0.0012 mole) was added, and the mixture was stirred at room temperature for 3 hours. The precipitate was collected by filtration to give 18. Experimental and analytical data for compound 18 are given in Tables 1 and 2.

Acknowledgement.

The authors wish to express their gratitude to the Ministry of Science and Technology, Slovenia, for the financial support.

REFERENCES AND NOTES

- [1] For a review see: R. J. Ternansky and S. E. Draheim, The Synthesis and Biological Evaluation of Pyrazolidinone Antibacterial Agents in Recent Advances in the Chemistry of β-Lactam Antibiotics, P. H. Bentley and R. H. Southgate, eds, The Royal Society of Chemistry, London, 1989, pp 0000.
- [2] J. M. Indelicato and C. E. J. Pasini, J. Med. Chem., 31, 1227 (1988).
 - [3] H. Dorn and A. Otto, Chem. Ber., 101, 3287 (1968).
- [4] L. N. Jungheim, S. K. Sigmund, and J. W. Fisher, Tetrahedron Letters, 28, 285 (1987).
- [5] L. N. Jungheim, S. K. Sigmund, N. D. Jones, and J. K. Swartzendruber, Tetrahedron Letters, 28, 285 (1987).
- [6] L. N. Jungheim and S. K. Sigmund, J. Org. Chem., 52, 4007 (1987).
- [7] R. E. Holmes and D. A. Neel, Tetrahedron Letters, 39, 5567 (1990).
 - [8] F. H. Stodola, J. Org. Chem., 13, 757 (1948).
 - [9] B. Stanovnik, Tetrahedron, 47, 2925 (1991).
- [10] M. Žličar, B. Stanovnik, and M. Tišler, Tetrahedron, 48, 7965 (1992).
- [11] B. Stanovnik, B. Jelen and M. Žličar, Il Farmaco, 48, 231 (1993)
- [12] H. B. Gillespie and H. R. Snyder, Org. Synth., Coll. Vol 2, 489 (1943).
- [13] The detailed nmr studies and X-ray structural analyses of compounds 6a, 8a, 10, and 15 will be published elsewhere.
- [14a] B. G. Christensen, D. B. R. Johnston, S. M. Schmitt, European Patent Appl. EP 168,707; Chem Abstr., 106, 66999w (1987); [b] B. G. Christensen, D. B. R. Johnston, S. M. Schmitt, European Patent Appl. EP 169,410; Chem Abstr., 106, 67000a (1987).